10 КЛАСС

Тема урока: Органические вещества клетки: Углеводы, липиды, белки».

Цели урока: 1. Сформулировать определение понятия «органические вещества».

- 2. Вспомнить как классифицируются органические вещества.
- 3. Рассмотреть особенности строения белков, жиров, углеводов.
- 4. Выявить значение органических веществ для клетки.
- 5. Иметь представление о свойствах белковых молекул: денатурация, ренатурация.

ТЕХНОЛОГИЧЕСКАЯ КАРТА УРОКА

- 1. Орг. момент.
- 2. Проверка домашнего задания.
- 1) Биологический диктант
- 1.В состав живых организмов из 117 хим. элементов входит –(80)
- 2. На сколько групп делятся хим. элементы по количественному составу (3)
- 3.Назовите элементы макромолекулы 1 группы: (O,H,C,N)
- 4. Макромолекулы 2 группы : (ионы Mg, K, Na, Ca, Fe, Cl)
- 5.В состав костной ткани входят элементы: кальций, фосфор
- 6.В состав гемоглобина крови входит: (железо)
- 7. Магний входит в состав пигмента (хлорофилла)
- 8.В клетках поджелудочной железы содержится: (никель)
- 9.В белом веществе мозга содержится: (молибден)
- 10.Основное свойство воды (растворитель)

3. ОСНОВНАЯ ЧАСТЬ

Органические вещества (соединения) клетки – химические соединения, в состав которых входят атомы углерода (белки, углеводы, жиры, нуклеиновые кислоты и др. соединения, которых нет в неживой природе).

1) Что из себя представляют нейтральные жиры? **Липиды (жиры)** - это соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина

2) Классификация липидов.

Классификация липидов простые сложные терпены стероиды Нейтральные жиры, жиры, воск Фосфолипиды, Гликолипиды, липопротеиды Эфирные масла, каротиноиды Половые гормоны, Желчные кислоты

3) Разнообразие липидов

Название Особенности строения

Где встречают

1) Воск Сложный эфир длинноцепочечного спирта и жирных кислот. Соты пчел, хитин.

- 2) Фосфолипиды Глицерин + фосфорная кислота + жирные кислоты. Мембраны клеток.
- 3) Гликолипиды Жир + углевод. В составе мембран хлоропластов, миелиновых оболочек.
- 4) Липопротеиды Липид + белок. В составе мембран животных клеток.
- 5) Стероиды Не содержат жирных кислот. Половые гормоны- эстраген, прогестерон, тестостерон, витамин D, желчные кислоты.
- 6) Терпены Нет глицерина, нет жирных кислот, но есть эфирная связь Каротиноиды, порфины, билирубин, витамин В2, компоненты эфирных масел.

4) Свойства липидов.

Нерастворимы в воде; Растворимы о органических растворителях: в эфире, бензине, хлороформе.

5) Функции липидов

Функции Сущность

- 1) Структурная В состав мембран входят фосфолипиды, гликолипиды. 2) Энергетическая При расщеплении одного грамма жира выделяется 38,9кДж. 3) Запасающая Создание резервного источника энергии (капля жира в клетке, жировое тело насекомого, подкожная жировая клетчатка млекопитающих.
- 4) Защитная Водоотталкивающее средство (воск, перья, шерсть), электрическая изоляция, физическая защита от механических повреждений.
- 5)Терморегуляторная Тепловая изоляция (подкожный жир «бурый жир»- биологический обогреватель.
- 6) Источник эндогенной воды Окисление 100г жира дает 107 мл воды.
- 7) Регуляторная Липиды- предшественники синтеза жирорастворимых витаминов: A, D, E, K.
- 6) **Углеводы** это сложные орг. соединения, состоящие из углерода и воды (три хим. элемента C, H, O) Общая формула $C_n(H_2O)_m$ Углеводы образуются в процессе фотосинтеза в клетках зеленых растений.

7) Классификация углеводов

- **Моносахариды (простые)** хорошо растворимы в воде, имеют сладкий вкус.
- **1.Глюкоза** (виноградный сахар) в плодах растений, в цветках, в крови мозге. Участвует в регуляции нервной системы и ЖВС.
- **2. Фруктоза** в соке плодов, меде и сах. Свекле.
- **3.Рибоза и дезоксирибоза** входят в состав нуклеиновых кислот (ДНК, РНК), из них состоят клетки животных и растительных организмов

- Дисахариды (образованы двумя молекулами моносахаридов)
- 1.Лактоза (молочный сахар) в молоке
- 2.Сахароза в сахарной свекле, моркови.
- Полисахариды сложные углеводы
- 1.Целлюлоза кожура растений
- 2. Крахмал клубни картофеля, семена растений
- 3.Гликоген (животный крахмал) клетки печени, мышц
- **4.Хитин** наружный скелет насекомых, членистоногих и стенки нитей грибов

8) Функции углеводов:

- **1.**Энергетическая (1 г 17,6 кДж энергии), в клетке распадаются до CO_2 и H_2O
- **2.**Строительная (из целлюлозы состоят стенки растительных клеток, хитиннаружный скелет насекомых, содержатся в межклеточном веществе кожи, сухожилий, хрящей, придавая им прочность и эластичность.
- 9) Белки сложные органические соединения, биополимеры, мономерами которых являются аминокислоты.

10) Состав белков

Аминокислоты (аминокарбоновые кислоты) полярные соединения, содержащие аминогруппу (-NH 2) и карбоксильную группу (-COOH), обеспечивающую свойства кислоты.

Аминокислоты соединяются друг с другом пептидной связью, образуя полипептидную цепь.

Пептидная связь – ковалентная связь, образующаяся между азотом аминогруппы одной аминокислоты и углеродом карбоксильной группы другой аминокислоты.

11) Классификация белков

Белки простые и сложные состоят из остатков аминокислот, кроме аминокислот содержат небелковую - простетическую группу: атомы металла — металлопротеины молекулу липида — липопротеины, молекулу углевода — гликопротеины остаток фосфорной кислоты — фосфопротеины молекулу нуклеиновой кислоты — нуклеопротеины

12) Структура молекулы белка

Первичная структура — последовательность расположения аминокислотных остатков в полипептидной цепи. Выделяют 4 уровня пространственной организации белков.

Вторичная структура. Основным вариантом вторичной структуры является -спираль, имеющая вид растянутой пружины. Она образована одной полипептидной цепью в результате возникновения внутримолекулярных водородных связей между карбоксильными группами и аминогруппами, расположенными на соседних витках спирали.

Третичная структура – глобула, возникающая в результате возникновения химических связей: водородных, ионных, дисульфидных и установления гидрофильно- гидрофобных взаимодействий.

Четвертичная структура. Характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Глобулы удерживаются вместе благодаря ионным, гидрофильно-гидрофобным и электростатическим взаимодействиям, **гемоглобин.**

13) Функции белков

Название белка Особенности строения Роль белка

- 1) Защитные- белки (иммуноглобулин, фибриноген, интерферон) третичная структура уничтожение чужеродных веществ, выработка своих антител, свертывание крови, предохранение клетки от вирусов.
- 2) Двигательные (актин, миозин) актин- неподвижные нити, миозин- подвижные нити миофибриллы. движение мышц.
- 3) Регуляторные- (гистоны, инсулин) линейная и третичная структуры,
- Mr= регулируют синтез белка, РНК, содержание глюкозы в крови.
- 4) Белок- фермент (трипсин) Mr=24000, одна полипептидная цепь, 23 аминокислотных остатка. способен снижать микрофлору антибиотиков, участие в пищеварении, свертывании крови.
- 5) Запасающие- (миоглобин, альбумин, казеин молока)---- содержатся в мышцах хранение кислорода, резервы энергии.
- 6) Структурные ---(коллаген, кератин, эластин) ---Коллаген содержится в хрящах, сухожилиях, эластин- в связках. защитная, опорная функции.
- 7) Транспортные--- (гемоглобин, миоглобин) 4 субъединицы, 4 полипептидные цепочки, пептидные связи, Ацепь- 141 аминокислота, --В цепь перенос кислорода к тканям, обеспечивают вязкость крови.
- 8) Рецепторные-- (родопсин) мембранные рецепторы. ---ответ клетки на раздражение.

14) Свойства белков

Денатурация – это	 		
Ренатурация – это			

15) Вывод. В состав молекул живого вещества обязательно входят С, Н, О, N, S и P; Вода как полярный растворитель служит средой, где протекают все биохимические превращения; Белки выполняют множество функций, среди которых наиболее важны каталитическая и пластическая; Углеводы: моносахариды и полисахариды главным образом являются источником энергии для процессов, протекающих в организме; Жиры- основа биологических мембран клеток всех живых организмов.

ИТОГ ДОМАШНЕЕ ЗАДАНИЕ