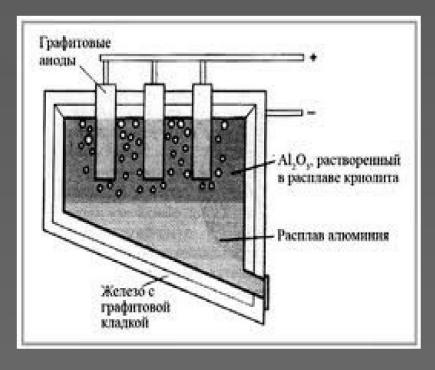
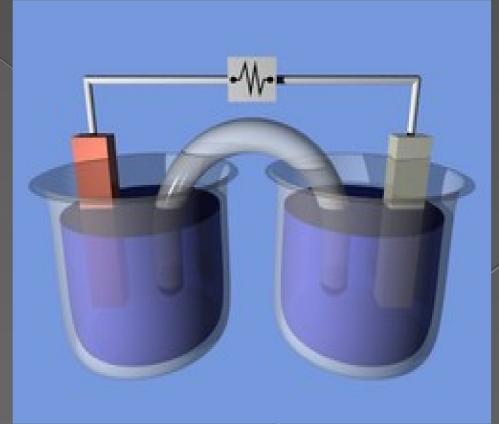

ЭЛЕКТРОЛИЗ


•ОПРЕДЕЛЕНИЕ
•ЭЛЕКТРОЛИЗЕРЫ
•ВИДЫ ЭЛЕКТРОЛИЗА:
•РАСПЛАВА
•РАСТВОРА
•ПРИМЕРЫ УРАВНЕНИЙ РЕАКЦИЙ
•ПРИМЕНЕНИЕ ЭЛЕКТРОЛИЗА


Электролиз - окислительновосстановительные процессы, протекающие на электродах при пропускании постоянного электрического тока через раствор или расплав электролита. Процесс перехода электрической энергии в химическую осуществляется в электролизере.

При электролизе катод заряжен отрицательно, а анод – положительно. Катод соединяется с отрицательным полюсом источника электрического тока, а анод подключается к его положительному полюсу.

ЭЛЕКТРОЛИЗЕРЫ

Электролиз расплавов

Пример электролиза расплава хлорида меди (II):

CuCl₂ = Cu +CL₂
$$\uparrow$$

CuCl₂ \rightarrow Cu²⁺ + 2Cl-

K-

$$Cu^{2+} + 2e = Cu^{0}$$

 A^+

$$CI - e = CI^{\circ}$$

 $2CI^{\circ} = CI_{2} \uparrow$

1.Соль активного металла и бескислородной кислоты

KCl ↔ K+ Cl-

К"катод"(-): К⁺ + 1е = К⁰

A"анод"(+): Cl⁻ — 1e = Cl⁰; Cl⁰+Cl⁰=Cl₂

Вывод: $2KCI \rightarrow (электролиз) 2K + Cl_2$

2.Соль активного металла и кислородосодержащей кислоты

 $Na_2SO_4 \leftrightarrow 2Na^+ + SO_4^{2-}$

K(-): 2Na+ +2e =2Na0

A(+): $2SO_4^{2-} - 4e = 2SO_3 + O_2$

Вывод: $2Na_2SO_4 \rightarrow (электролиз) 4Na + 2SO_3 + O_2$

3. Гидроксид: активный металл и гидроксид-ион

CsOH ↔ Cs⁺ + OH⁻

K(-): $Cs^+ + 2e = Cs^0$

A(+): $4OH^- - 4e = 2H_2O + O_2$

Вывод: $4CsOH \rightarrow (электролиз) 4Cs + 2H_2O + O_2$

4. Менее активные металлы - аналогично

5. Неактивные металлы - аналогично

Электролиз растворов

Катодные процессы определяются окислительной активностью катионов

Рассмотрим таблицу:

Li - Al	Mn - Pb	H2	Cu - Au
Li +- Al ³⁺	Mn ²⁺ - Pb ²⁺	2H⁺	Cu ²⁺ - Au ³⁺
<u>Ион металла</u> на катоде <u>не</u> <u>восстанавливае</u> <u>тся</u> . 2H₂O +2e=H₂+2OH -	Происходят два процесса: восстановление иона металла и молекулы воды. Ме ⁿ⁺ +ne=Me ⁰ 2H ₂ O+2e=H ₂ +2OH ⁻		Происходит только восстановление иона металла. Ме ⁿ⁺ +ne=Me ⁰
Усиление окислительных свойств катионов. ————————————————————————————————————			

Электролиз раствора иодида калия

- Анодные процессы зависят не только от характера аниона, но и от материала анода.
- Если анод растворим, то при электролизе происходит окисление металла анода:

 Me^0 - $ne = Me^{n+1}$

анод раствор

В случае нерастворимого анода возможны следующие процессы:

Бескислородный анион (кроме F⁻) S²⁻; I⁻; Br⁻; CI⁻

Кислородсодержащий анион OH^- ; SO_4^{2-} ; NO_3^- ; CO_3^{2-} PO_4^{3-} ; F^-

Окисление аниона:

 Ac^{m-} - $me = Ac^0$

В щелочной среде: $4OH^{-} - 4e = O_2 + 2H_2O$ В кислотной и нейтральной средах: $2H_2O - 4e = O_2 + 4H^{+}$

Ослабление восстановительной активности анионов

1.Соль образована металлом высокой активности.

 $Ba(NO_3)_2$

 $Ba(NO_3)_2 = Ba^{2+} + 2NO_3^{-1}$

На катоде:

2H₂O +2e=H₂+2OH⁻

 $Ba^{2+} + 2OH^{-} = Ba(OH)_{2}$

На аноде:

 $2H_2O - 4e = O_2 + 4H^+$

 $NO_3^- + H^+ = HNO_3^-$

$$Ba(NO_3)_2 + 2H_2O = 2H_2 + O_2 + Ba(NO_3)_2$$

2. Соль образована металлом средней активности.

$$FeCl2$$

$$FeCl2 = Fe2+ + 2Cl-$$

На катоде:

A) $2H_2O+2e=H_2+2OH^{-1}$

Б) $Fe^{2+}+2e = Fe^{0}$

 $Fe^{2+} + 2OH^{-} = Fe(OH)_{2}$

На аноде:

 $2Cl^{-} - 2e = Cl_{2}$

$$2FeCl_2 + 2H_2O = Fe^0 + Fe(OH)_2 + H_2 + 2Cl_2$$

3. Соль образована металлом низкой активности.

CuSO₄

$$CuSO_4 = Cu^{2+} + SO_4^{2-}$$

На катоде:

 $Cu^{2+} + 2e = Cu^0$

На аноде:

 $2H_{2}O - 4e = O_{2} + 4H^{+}$

 $SO_4^{2-} + 2H^+ = H_2SO_4^-$

$$2CuSO_4 + 2H_2O = O_2 + 2H_2SO_4 + 2Cu$$

Применение электролиза:

- При электролизе расплавов солей и щелочей в промышленности получают активные металлы (щелочные, щелочноземельные, бериллий, магний, алюминий).
- Электролиз растворов лежит в основе гальванотехники:

Тальваностегия – нанесение на поверхность металла слоев других металлов с целью предохранения изделий от коррозии, придания твердости, в декоративных целях.

Гальванопластика – создание металлических копий с рельефных предметов, матриц

- электрополирование стали, оксидирование (покрытие оксидной пленкой),
- получение фтора, хлора, водорода высокой чистоты, перекиси водорода, щелочей.
- химический источник электрического тока лежит в основе аккумулятора – прибора, позволяющего накапливать электроэнергию.

При составлении презентации были использованы материалы региональной коллекции видеоматериалов "Неорганическая химия. Видеоопыты."

http://collection.edu.yar.ru/dlrstore/04141a12-4446-84ea-62fd-24bfd68 7d010/index.htm